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Abstract— Various instruments are used to create images of
the Earth and other objects in the universe in a diverse set
of wavelength bands with the aim of understanding natural
phenomena. Sometimes these instruments are built in a phased
approach, with additional measurement capabilities addedin
later phases. In other cases, technology may mature to the point
that the instrument offers new measurement capabilities that
were not planned in the original design of the instrument. In
still other cases, high resolution spectral measurements may be
too costly to perform on a large sample and therefore lower
resolution spectral instruments are used to take the majority of
measurements. Many applied science questions that are relevant
to the earth science remote sensing community require analysis of
enormous amounts of data that were generated by instruments
with disparate measurement capabilities. This paper addresses
this problem using Virtual Sensors: a method that uses models
trained on spectrally rich (high spectral resolution) data to
”fill in” unmeasured spectral channels in spectrally poor (low
spectral resolution) data. The models we use in this paper
are Multi-Layer Perceptrons (MLPs), Support Vector Machines
(SVMs) with Radial Basis Function (RBF) kernels and SVMs with
Mixture Density Mercer Kernels (MDMK). We demonstrate this
method by using models trained on the high spectral resolution
Terra MODIS instrument to estimate what the equivalent of the
MODIS 1.6 micron channel would be for the NOAA AVHRR/2
instrument. The scientific motivation for the simulation of the 1.6
micron channel is to improve the ability of the AVHRR/2 sensor
to detect clouds over snow and ice.

Index Terms— Data Mining, Neural Networks, Support Vector
Machine, Kernel Methods, Remote Sensing, MODIS, AVHRR,
cloud detection.

I. I NTRODUCTION

T HIS paper describes the development of data mining
algorithms that learn to estimate unobserved spectra from

remote sensing data. The idea is that data mining algorithms
trained on spectrally-rich (high spectral resolution) data can
be used to generate estimates of what those measurements
would have been for data that are spectrally-poor (low spectral
resolution), This enables us to glean more information from
that spectrally-poor data. This is an important problem to solve
because spectrally-poor data may be available for longer peri-
ods of time than spectrally-rich data. This happens becauseof
improvements in measurement capabilities due to instruments
being built in phases, technological improvements, or the need
to reduce measurement costs. Many applied science questions
that are relevant to the remote sensing community need to
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be addressed by analyzing very large amounts of data that
were generated by instruments with different measurement
capabilities.

For example, consider the relationship between the
AVHRR/2 (Advanced Very High Resolution Radiometer) and
the MODIS (Moderate Resolution Imaging Spectroradiometer)
instruments. AVHRR/2 generates images in only five spectral
channels, whereas MODIS generates images in 36 different
spectral channels. However, AVHRR/2 data has been available
since 1981 whereas MODIS has only been available since
1999. MODIS channels 1, 2, 20, 31, and 32 correspond rea-
sonably well to the five AVHRR/2 channels. We can use data
mining methods to model any MODIS channel not available
in AVHRR/2 as a function of these five MODIS channels. We
can then use the learned model to generate an estimate of what
that MODIS channel would have been had it been available in
AVHRR/2 given the five actual AVHRR/2 channels as input.
If the learned model is of high quality, we can use it to obtain
estimates of MODIS channels for years prior to 1999 when
MODIS came on-line. We refer to this as aVirtual Sensor
because it estimates unmeasured spectra. In this paper, we use
Virtual Sensors to generate an estimate of MODIS channel 6
(1.6 microns) for AVHRR/2 because a spectral channel at 1.6
microns is useful for discriminating clouds from snow- and
ice-covered surfaces. We chose this task to demonstrate the
usefulness of Virtual Sensors in this paper.

In the next section, we discuss the scientific motivation
for using Virtual Sensors to simulate MODIS channel 6 for
the AVHRR/2 instrument. In Section III, we describe Virtual
Sensors formally and as a general method going beyond the
specific application that we discuss in Section II. In Section IV,
we briefly review some standard machine learning algorithms
that we use to perform the modeling necessary to create a
Virtual Sensor. In Section V we discuss our experimental
results. Section VI concludes the paper and discusses future
work.

II. V IRTUAL SENSORS FORCRYOSPHEREANALYSIS

Intensification of global warming in recent decades has
raised interest in year-to-year and decadal-scale climatevari-
ability in the Polar Regions. This is because these regions
are believed to be among the most sensitive and vulnerable
to climatic changes. The enhanced vulnerability of the Polar
Regions is believed to result from several positive feedbacks,
including the temperature-albedo-melt feedback and the cloud-
radiation feedback. Recent observations of regional anomalies
in ice extent, thinning of the margins of the Greenland ice
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sheet, and reduction in the northern hemispheric snow cover,
may reflect the effect of these feedbacks. Remote sensing
products provide spatially and temporally continuous and
consistent information on several polar geophysical variables
over nearly three decades. This period is long enough to permit
evaluation of how several cryospheric variables change in
phase with each other and with the atmosphere and can help
to improve our understanding of the processes in the coupled
land-ice-ocean-atmosphere climate system. Cloud detection
over snow- and ice-covered surfaces is difficult using sensors
such as AVHRR/2. This is because of the lack of spectral
contrast between clouds and snow in the channels on the
earlier AVHRR/2 sensors. Snow and clouds are both highly
reflective in the visible wavelengths and often show little
contrast in the thermal infrared.

The AVHRR Polar Pathfinder Product (APP) consists of
twice daily gridded (at 1.25 and 5km spatial resolution) surface
albedo and temperature from 1981 to 2000. A cloud mask
accompanies this product but has been found to be inadequate,
particularly over the ice sheets [1]. The 1.6 micron channelon
the MODIS instrument as well as the AVHRR/3 sensor can
significantly improve the ability to detect clouds over snow
and ice. Therefore, by developing a virtual sensor to model
the MODIS 1.6 micron channel (channel 6) as a function
of the AVHRR/2 channels, we can improve the cloud mask
in the APP product, and subsequently improve the retrievals
of surface temperature and albedo in the product. In doing
so we will be able to improve the accuracy in documenting
seasonal and inter-annual variations in snow, ice sheet andsea
ice conditions since 1981.

III. V IRTUAL SENSORS IN GENERAL

In this section, we discuss Virtual Sensors in general, going
beyond the specific application discussed in section II. For
purposes of the discussion presented here, we model the data
as matrices of time series (following the notation in [2]). The
spatiotemporal random functionZ(u, λ, t) is modeled as a
finite numbern of spatially correlated time series with the
following representation:

Z(u, λ, t) = [Zu(λ, t)] (1)

= [Zu1
(λ, t), Zu2

(λ, t), ..., Zun
(λ, t)]T

In Equation 1,u represents the spatial coordinate,λ repre-
sents the vector of measured wavelength(s), andt represents
time. The superscriptT indicates the transpose operator. If
multiple wavelengths are measured, then eachZi is actually a
matrix, and the functionZ(u, λ, t) represents a data cube of
size(n×Λ×T ), where these symbols represent the number of
spatial locations, the total number of measured wavelengths,
and the total number of time samples, respectively. In this
notation, the spatial coordinateu represents the coordinates
(or index) of a measurement at a particular location in the
field of view. Conceptually, the equation above describes a set
of n (Λ×T ) matrices. In the event that the spatial coordinate
indexes image pixels, it is useful to think of Equation 1 as

describing a time series of data cubes (spectral images) of
sizen × n × Λ.

Consider a situation where one is given a sensorS1 which
takes k spectral measurements in wavelength bandsB1 =
{λ1, λ2, . . . , λk} at time t1. Suppose that we have another
sensorS2 which has a set of spectral measurements taken
at time t2, B2 = {λ1, λ2, . . . , λk, λk+1, λk+2, . . . , λk+l} that
partially overlaps the spectral features contained inB1 in
terms of power in the spectral bands. Thus,B1 (or, in
general,B1 ∩ B2) are the common spectral measurements.
Note that these measurements are common only in their power.
B = B2 \ B1 = {λk+1, λk+2, . . . , λk+l} represents the
measurements available inB2 that are not available inB1.
We investigate the problem of building an estimatorΓ(Z(B))
that best approximates the joint distributionP (Z(B)|Z(B1)),
where Z(B) is the data cube for the wavelength bandsB.
Thus, we have:

Γ(Z(B)) ≈ P (Z(B)|Z(B1)) (2)

The value of building an estimator forP is clear particularly
in situations whereS1 has been in operation for a much longer
period of time thanS2. S1 may have fewer spectral channels
in which measurements are taken compared toS2. However,
it may be of scientific value to be able to estimate what the
spectral measurements in wavelengthsB would have been if
S1 could have measured them.

The joint distribution given byP (Z(B)|Z(B1)) contains
all the information needed to recover the underlying structure
captured by the sensorS2. If perfect reconstruction of this joint
distribution were possible, we would no longer need sensor
S2 because all the relevant information could be generated
from the smaller subset of spectral measurementsB1 and the
estimatorΓ. Of course, such estimation is often extremely
difficult because there may not be sufficient information in
the bandsB1 to perfectly reconstruct the distribution. Also, in
many cases, the joint distribution cannot be modeled properly
using parametric representations of the probability distribution
since that may require a significant amount of domain knowl-
edge and may be a function of the ground cover, climate, sun
position, time of year, and numerous other factors.

In this paper, we describe methods to estimate the first
moments of this distribution. Some methods allow us to model
the second moment of the distribution as well:

µ(Z(B)) =

∫

Γ(Z(B))Z(B)dB (3)

σ2(Z(B)) =

∫

[Γ(Z(B)) − µ(Z(B))]2Z(B)dB (4)

We use the functionΓ in the above computations as an
estimate of the (unknown) joint distributionP . Several com-
putational problems as well as problems due to the underlying
physical measurement process arise when we attempt to esti-
mateΓ.

Figure 1 gives a schematic view of the general virtual sensor
problem. The solid and dotted lines correspond to sensors
S1 andS2 respectively. A Virtual Sensor can be built when
there are some overlapping sensor measurements as depicted
in the figure. Notice that if there are no overlapping sensor
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Fig. 1. This figure helps illustrate the need for a Virtual Sensor. We have
spectral measurements from two sensorsS1 andS2, (solid and dotted lines,
respectively). We wish to estimate the output of sensorS1 for a wavelength
where there is no actual measurement from the sensor. Note that some sensor
measurements overlap perfectly, as in the case of wavelength = 3, and in other
cases, such as wavelength = 1, there is some overlap in the measurements.

measurements, we are unable to build an estimator. In real-
world problems, some measurements may overlap perfectly,
while others have a partial overlap. Generally speaking the
measurements from sensorS1 are not available at all wave-
lengths.

In the event that allk wavelength bands inS1 overlap with
a corresponding subset ofk bands inS2, butS2 has bands not
available inS1, the estimation process is more straightforward.
When partial overlap occurs between two sensors for a given
wavelength, calculations need to be performed to estimate
the amount of power that would have been measured in
the overlapping bands. This can be done using interpolation
methods.

We now outline the procedure for creating a Virtual Sensor.
At a minimum, we assume that for sensorS1 we have
measurementsZ1(B1) from one image, and for another sensor
S2 we assume that we have another imageZ2(B2). The
procedure for creating a Virtual Sensor is as follows, assuming
that we need to build a predictor for channelbk+1 (recall that
k is the number of bands inB1):

1) Find parameters θ that minimize the
squared error (or another suitable metric)
[E[Γ(Z2(B1), θ)] − Z2(bk+1)]

2. This is the Virtual
Sensor model fitting step.

2) Apply Γ to the data from sensorS1 to generate an
estimate ofE[Γ(Z1(bk+1), θ)]. This is the step where
the estimation of the unknown spectral contribution
occurs.

3) Evaluate the results based on science based metrics and
other information known about the image.

The procedure described above is standard in the data mining
literature. From the remote sensing perspective, it is interesting
to see the potentially systematic differences between the
performances of the estimator on data from sensorsS1 and
S2. These will tell us how much the differences between the
overlapping bands of the two sensors affect the accuracy of
the Virtual Sensor relative to the true sensor.

TABLE I

L INEAR CORRELATIONSBETWEEN MODIS CHANNELS

Channel 1 2 20 31 32 6

1 1.0000 0.9980 0.8778 0.8785 0.8784 0.6287

2 0.9980 1.0000 0.8786 0.8774 0.8773 0.6564

20 0.8778 0.8786 1.0000 0.9977 0.9977 0.7369

31 0.8785 0.8774 0.9977 1.0000 1.0000 0.6979

32 0.8784 0.8773 0.9977 1.0000 1.0000 0.6984

6 0.6287 0.6564 0.7369 0.6979 0.6984 1.0000
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Fig. 2. An example of a MultiLayer Perceptron (MLP).

Note that this procedure will only work if sufficient in-
formation exists to predictZ(B) given dataZ(B1). One
simple procedure for determining this is to look at the linear
correlation between the spectra. Figure I shows the inter-
channel linear correlations for the MODIS channels that we
use in this study (channels 1, 2, 20, 31, 32, and 6). In
this paper we build models to predict MODIS channel 6.
Notice that channel 6 has moderate linear correlations with
the other channels. This gives us hope that we can predict
MODIS channel 6 given the channels common to MODIS
and AVHRR/2. However, the large correlations among the
five common channels mean that they contain much redundant
information; therefore, prediction may be difficult.

IV. STANDARD MACHINE LEARNING METHODS

This section describes three estimation methods that we
have used to build a Virtual Sensor: a feed-forward neural net-
work (also called a multilayer perceptron, (MLP)), a Support
Vector Machine (SVM), and an SVM with a Mixture Density
Mercer Kernel.

A. Multi-Layer Perceptrons

We first describe multilayer perceptrons, a type of neural
network [3]. The central idea of neural networks is to construct
linear combinations of the inputs as derived features, and then
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model the target as a nonlinear function of these derived
features. Neural networks are often depicted as a directed
graph consisting of nodes and arcs. An example is shown
in Figure 2. Each column of nodes is a layer. The leftmost
layer is the input layer. A data point to be classified is entered
into the input layer. The second layer is the hidden layer and
the third layer is the output layer. Information flows from the
input layer to the hidden layer and then to the output layer
via a set of arcs (depicted in Figure 2 as arrows). Note that
the nodes within a layer are not directly connected. In our
example, every node in one layer is connected to every node
in the next layer, but this is not required in general. Also, a
neural network can have more or less than one hidden layer
and can have any number of nodes in each hidden layer.

Each non-input node, its incoming arcs, and its output
(which is passed out through all of its outgoing arcs) constitute
a neuron, which is the basic computational element of a neural
network. Each incoming arc multiplies the value coming from
its origin node by the weight assigned to that arc and sends
the result to the destination node. The destination node adds
the values presented to it by all the incoming arcs, transforms
it with a nonlinear activation function (to be described later),
and then sends the result along all of its outgoing arcs. For
example, the return value of a hidden nodezj in our example
neural network is

zj = g





|A|
∑

i=1

w
(1)
i,j xi



 , (5)

where|A| is the number of input units,w(k)
i,j is the weight

on the arc in thekth layer of arcs that goes from uniti in the
kth layer of nodes to unitj in the next layer (sow(1)

i,j is the
weight on the arc that goes from input uniti to hidden unit
j) andg is a nonlinear activation function. A commonly used
activation function is the sigmoid function:

g(a) ≡
1

1 + exp(−a)
. (6)

The return value of an output nodeyj is

yj = g

(

Z
∑

i=1

w
(2)
i,j zi

)

(7)

where Z is the number of hidden units andw(2)
i,j is the

weight on the arc from hidden uniti to output unitj. The
outputs are clearly nonlinear functions of the inputs.

Neural networks are trained to fit data by a process that
is essentially nonlinear regression. Given each entry in the
training dataset, the network’s current prediction is calculated.
The difference between the true function value and the pre-
diction is the error. The derivative of this error with respect to
each weight in the network is calculated and the weights are
adjusted accordingly to reduce the error.

ξ

ε

ε

Fig. 3. Support Vector Machine for regression. The solid line is the line
fitted to the points (represented as circles). The dashed lines are a distanceǫ
from the fitted line. The points within the dashed line are considered to have
zero error by anǫ-insensitive loss function.

B. Support Vector Machines

Support Vector Machines for classification and regression
are described in detail in [4], but here we briefly describe
Support Vector Regression (SVR), which we use in this paper.
In real-world problems, traditional linear regression cannot be
expected to fit a data set perfectly (i.e., with zero error). For
this reason, nonlinear regression is often used with the hope
that a more powerful nonlinear model will achieve a better
fit to the data than a linear model. However, this power often
comes with two drawbacks. The first drawback is that the
error surface as a function of the parameters of a nonlinear
model (such as the multilayer perceptrons discussed above)
often have many local optima that are not globally optimal.
Nonlinear regression algorithms such as backpropagation for
MLPs often find these local optima, which can result in
a model that does not predict well on unseen data. The
second drawback is that nonlinear model fitting is often overly
sensitive to the locations of the training points, so that they
overfit the training points and do not perform well on new
data.

Support Vector Regression performs nonlinear regression by
solving a convex optimization problem, which has one globally
optimal solution. This solves the first drawback discussed
above of ending up with a locally optimal parameter setting.
SVR addresses the second drawback in three ways. The first
way is to use anǫ-insensitive loss function. Ify is the true
response andf(x) is the predicted response for the inputx,
then the loss function is

|y − f(x)|ǫ = max{0, |y − f(x)| − ǫ} (8)

That is, if the error between the true response and the
predicted response is less than some smallǫ, then the error on
that point is considered to be zero. For example, in Figure 3,
the solid line, which is the fitted line, is withinǫ of all the
points between the two dashed lines; therefore, the error is
considered to be zero for those points. Ifǫ is set to the
level of the typical noise that one can expect in the response
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variable, then support vector regression is less likely to expend
effort fitting the noise in the training data at the expense of
generalization performance, i.e., it is less likely to overfit.

The second way support vector regression addresses the
overfitting problem is to allow some error beyondǫ for each
training point but minimize the total such error over all the
points. In Figure 3,ξ is the additional error for one particular
point. The sum of the errors of all the training points is
minimized as part of solving the optimization problem. This
also reduces the effort expended in fitting the noise in the
training data.

The third way that SVR addresses the above problems is to
map the data from the original data space into a much higher
(possible infinite) dimensionalfeature spaceand perform
linear regression in that space. The idea is that the linear
model in the feature space may correspond to a complicated
nonlinear model in the original data space. Clearly, one needs
a practical way to deal with data that is mapped to such a
high-dimensional space, which intuitively seems impossible.
However, one is able to do this using thekernel trick. By
introducing Lagrange multipliers and obtaining the dual ofthe
original SVR optimization problem (see [4] for the details),
one obtains the following:

maximizeα,α∗∈R − ǫ

m
∑

i=1

(α∗
i + αi) +

m
∑

i=1

(α∗
i − αi)yi (9)

−
1

2

m
∑

i=1

m
∑

j=1

(α∗
i − αi)(α

∗
j − αj)xi · xj (10)

subject to0 ≤ αi, α
∗
i ≤ C for all i ∈ {1, 2, . . . , m} (11)

and
m
∑

i=1

(αi − α∗
i ) = 0. (12)

The resulting regression estimate is of the form

f(x) =

m
∑

i=1

(α∗
i − αi)xi · xj + b. (13)

Note that the inputs (x’s) only appear in dot products in the
above solution. Therefore, one can map the inputs into a very
high or even infinite dimensional spaceH using a function
Φ : Rd → H and the dot productΦ(xi) · Φ(xj) will still
be a scalar. Of course,Φ would be too difficult to work with
because of the high dimensionality ofH . However, there exist
kernel functionsK(xi, xj) = Φ(xi) · Φ(xj) such thatK is
practical to work with even though theΦ induced by thatK
is not. For example, the Gaussian kernel (also referred to as
the RBF kernel),

K(xi,xj) = e
−‖xi−xj‖

2σ2 (14)

gives rise to aΦ that is infinite-dimensional. However, we
do not need to work directly withΦ or even know what it is
because theΦ’s only appear within dot products, which can be
replaced byK. Therefore, the new regression estimate after
mapping the inputs from the data space to the feature space
is

f(x) =

m
∑

i=1

(α∗
i − αi)K(xi,xj) + b. (15)

In summary, the Support Vector Machine allows us to fit a
nonlinear model to data without the local optima problem that
other procedures suffer from and with less tendency to overfit.

The kernel functionK can be viewed as a measure of
similarity between two data points. For example, with the
Gaussian kernel, the valueK(xi,xj) increases as the distance
between the pair of pointsxi and xj decreases. There is
significant current research attempting to determine which
kernel functions are most appropriate for different types of
problems. One such novel kernel function is the Mixture
Density Mercer Kernel (MDMK) which is discussed in the
next section.

C. Mixture Density Mercer Kernels

The Mixture Density Mercer Kernel (MDMK) [5] is a
method of learning a kernel function directly from the data.
Some kernel functions, like the Gaussian Kernel discussed in
the preceding section, are predefined. In fact, the Gaussian
Kernel is just a nonlinear function of the Euclidean distance
between points. Rather than assuming a priori that the Eu-
clidean distance or some other distance function is correct,
the MDMK generates a measure of similarity that attempts to
represent the similarity between points based on their higher
level features. These higher level features could be measured in
a variety of ways. In the subsequent paragraphs, we illustrate
one way of measuring higher level features.

Our idea is to use a collection or, more formally, an
ensembleof probabilistic mixture models as a similarity mea-
sure. Two data points will have a large similarity if multiple
models agree that they should be placed in the same cluster
or mode of the distribution. Those points where there is
some disagreement will be assigned intermediate similarity
scores and points for which most models disagree will be
assigned low similarity scores. The shapes of the underlying
mixture distributions can significantly affect the similarity
measurement of the two points. Experimental results uphold
this intuition and show that in regions where there is “no
question” about the membership of two points, the Mixture
Density Kernel behaves identically to a standard mixture
model. However, in regions of the input space where there
is disagreement about the membership of two points, the
behavior may be quite different from the standard model, i.e.,
the similarity measures returned may be very different. Since
each mixture density model in the ensemble can be encoded
with domain knowledge by constructing informative priors,
the MDMK will also encode domain knowledge. The MDMK
is defined as follows:

K(xi,xj) = ΦT (xi)Φ(xj) (16)

=
1

Z(xi,xj)

M
∑

m=1

Cm
∑

cm=1

Pm(cm|xi)Pm(cm|xj)
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The feature space is thus defined explicitly as follows:

Φ(xi) ∝ [P1(c = 1|xi), P1(c = 2|xi), . . . ,

P1(c = C|xi), P2(c = 1|xi), . . . , PM (c = C|xi)]

The first sum in equation 16 sweeps through theM models
in the ensemble, where each mixture model is a Maximum
A Posteriori estimator of the underlying density trained by
sampling (with replacement) the original data.Cm defines the
number of mixtures in themth model, andcm is the cluster (or
mode) label assigned by the model. The quantityZ(xi,xj) is
a normalization such thatK(xi,xi) = 1 for all i. The fact that
the Mixture Density Kernel is a valid kernel function arises
directly from the definition.

The Mixture Density Kernel function can be interpreted as
follows. Suppose that we have a hard classification strategy,
where each data point is assigned to the most likely posterior
class distribution. In this case the kernel function countsthe
number of times theM mixtures agree that two points should
be placed in the same cluster mode. In soft classification,
two data points are given an intermediate level of similarity
(between 0 and 1) which will be less than or equal to the case
where all models agree on their membership, in which case
the entry would be unity. Further interpretation of the kernel
function is possible by applying Bayes rule to the defining
equation of the Mixture Density Kernel. Thus, we have:

K(xi,xj) =
1

Z(xi,xj)

M
∑

m=1

Cm
∑

cm=1

Pm(xi|cm)Pm(cm)

Pm(xi)
×

Pm(xj |cm)Pm(cm)

Pm(xj)
(17)

=
1

Z(xi,xj)

M
∑

m=1

Cm
∑

cm=1

Pm(xi,xj |cm)P 2
m(cm)

Pm(xi,xj)

The second step above is valid under the assumption that the
two data points are independent and identically distributed.
This equation shows that the Mixture Density Kernel measures
the ratio of the probability that two points arise from the same
mode to the unconditional joint probability. If we simplifythis
equation further by assuming that the class distributions are
uniform, the kernel tells us on average (across models) the
amount of information gained by knowing that two points are
drawn from the same mode in a mixture density.

V. RESULTS

All the MODIS and AVHRR/2 data used in the analysis
were geolocated and gridded to a 1.25 km Equal Area Scalable
Earth Grid (EASE-grid) [6] containing the Greenland ice sheet
and the surrounding ocean (which is mixture of open water
and sea ice). Thirteen MODIS images from the year 2000
were processed (one for each day, 140-149 and 151-153).
Corresponding AVHRR/2 images were available for the same
dates, but at different orbital cross-over times. The results
discussed in this section are obtained by training the three
different methods on a small subset of a MODIS image from
the Greenland ice sheet on day 140 of the year 2000. A small
subset was chosen to train the models because of the high

Fig. 4. MODIS predictions from year 2000, days 140-153. Thisfigure shows
the percent cloud cover in each image determined using channel 6 and using
the cloud mask, and the true positive rates for MLPs, SVMs with RBF kernels,
and SVMs with MDMK kernels on these images.

Fig. 5. MODIS predictions from year 2000, days 140-153. Thisfigure shows
the percent cloud cover in each image determined using channel 6 and using
the cloud mask, and the true negative rates for MLPs, SVMs with RBF kernels,
and SVMs with MDMK kernels on these images.

running time of the SVM models. The models were trained
on day 140 and tested on MODIS and AVHRR/2 images
from days 140-153. This approach maximizes the range of
differences in time of year between the training and test images
and allows for analysis of how much prediction loss occurs
as a result of this difference. In running the models, only
pixels for which the MODIS channel 1 (0.65 microns) top-
of-atmosphere (TOA) reflectance1 was greater than 0.3 were
used, thereby removing pixels that are over open water and
keeping only the snow/ice-covered areas. This turned out tobe
about half of the MODIS day 140 image (1.6 million pixels).
Out of these pixels, we chose about 2500 of them at random
for training. In all cases, the inputs were the five MODIS

1This is the reflectance received by the sensor from the Earth’s atmosphere.
This is normalized by the cosine of the solar zenith angle.
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Fig. 6. Histogram of percentage error of MLP (upper left), SVM with RBF
kernel (upper right), and SVM with MDMK kernel (lower left) relative to the
true channel 6. This was calculated for MODIS year 2000 day 149 time 1825
for Greenland only.

channels that correspond most closely to the five AVHRR/2
channels (see the Appendix for tables with AVHRR/2 and
MODIS instrument specifications for the channels used in this
paper). That is, the inputs were the MODIS channels 1, 2, 20,
31 and 32. The output to be predicted was MODIS channel 6.

A. MODIS Results

Figure 4 summarizes the amount of cloud cover for each
day (defined using a threshold of 0.2 on the MODIS channel
6 images) together with the true positive retrieval rates by
the MLP, SVM with RBF kernel, and SVM with MDMK
kernel. The true positive retrieval rate is defined as the number
pixels predicted to have cloud cover that actually have cloud
cover divided by the total number of pixels that actually have
cloud cover. The threshold of 0.2 was chosen for channel
6 because the MODIS cloud mask team uses this threshold.
Included in the figure is the percentage of cloud cover from
the MODIS cloud mask (MOD35) product. In computing the
fraction of cloud cover from the MOD35 product we counted
as cloudy only the pixels that were classified as “cloudy”
(i.e., we did not count those pixels classified as “probably
cloudy,” “probably clear,” or “clear.” Notice that the MODIS
cloud mask product predicts about 20% more clouds than
using a threshold of 0.2 on MODIS channel 6. There are
several possible reasons for this. Firstly, the MODIS cloud
product uses other threshold tests besides the test on channel 6
reflectance. Secondly, studies have suggested that the MODIS
cloud mask tends to overpredict the amount of clouds over
snow [7]. Figure 5 shows the true negative retrieval rates of
the three models together with the amount of cloud cover for
each day. The true negative retrieval rate is the number of
pixels predicted to not have cloud cover that actually do not
have cloud cover divided by the total number of pixels that
actually do not have cloud cover. Overall, we see that the
SVM with RBF kernel has the greatest tendency to predict
that a cloud is present, followed by the SVM with MDMK

MODIS 2000 day 140 channel 6

Fig. 8. MODIS year 2000 day 140 time 1830 true channel 6.

kernel and the MLP. Overall, the MLP seems to have the best
combination of high true positive and true negative retrieval
rates. However, as we will see later, the SVM-based methods,
especially the MDMK kernel, discover certain structure in the
data not discovered by the MLP.

Figure 7 shows the MODIS true channel 6 (upper left) and
the channel 6 predictions returned by the MLP (upper right),
SVM with RBF kernel (lower left), and SVM with MDMK
kernel (lower right). In all four images, the Greenland coastline
is depicted in white, but only the upper half of the ice sheet is
shown. The histogram of the percentage differences between
the true channel 6 reflectance and the model-predicted channel
6 reflectances are shown in Figure 62. The MLP appears
to accurately model areas that are of low reflectance in the
MODIS channel 6 (e.g. no clouds) as seen by the high rate
of true negative retrieval. The MLP model is slightly less
successful in correctly modeling the high reflectance (e.g.
clouds), but the overall true positive retrieval rate is still
relatively high (70 to 90%). The SVMs with RBF and MDMK
model tends to overpredict the reflectance in MODIS channel
6, particularly in areas that are of low reflectance (e.g., no
clouds).

B. AVHRR Results

We now discuss the results of testing our MODIS-trained
models on two AVHRR/2 images. We evaluate these results
by examining the available AVHRR/2 images, deciding where
clouds are present based on textural variations, and observing
whether the models’ predictions capture these predictions. This
subjective evaluation is necessary because the APP cloud mask
is inadequate and the true 1.6 micron channel is unavailable.

Just as in the MODIS results, in the AVHRR/2 results the
Greenland coastline is depicted. Figure 9(a) shows the visible
(channel 1) TOA reflectance from AVHRR/2 for day 140
over the Greenland ice sheet. The image shows not only the

2These are calculated as the true channel 6 minus the predicted channel 6
divided by the true channel 6 multiplied by 100. Therefore, numbers less than
0 indicate that the model overpredicted while numbers greater than 0 indicate
that the model underpredicted.
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Fig. 7. MODIS predictions from year 2000, day 149 time 1825. (a) Upper Left. Channel 6. (b). Upper Right. Prediction of an MLP. (c) Lower Left. Prediction
of an SVM with RBF kernel. (d). Lower Right. Prediction of an SVM with MDMK kernel. The black areas with straight boundaries are regions containing
no data.

Greenland ice sheet with its coastline outlined in white, but
also open water areas and sea ice. The same is true in the
MODIS images shown in Figure 7, except in Figure 9 the
entire Greenland ice sheet is shown. Clouds are evident in
the visible image by textural variations in the south, central
and northwestern part of the ice sheet. Some clouds also
appear brighter and some darker than the underlying snow.
In Figure 9(b) through (d) the predicted TOA reflectances for
a channel at 1.6 microns are shown. We also show the MODIS
channel 6 TOA reflectance for this day in Figure 8. However,
note that this image is collected at a slightly different orbital
time from the AVHRR image. Thus some differences are to be
expected as a result of changes in cloud conditions with time.
Even so, the MODIS channel 6 image is useful for helping to
validate how well the models predict TOA reflectance at 1.6
microns. The MLP prediction (Figure 9(b)) indicates that the
majority of the ice sheet is cloud free (very low reflectance
at 1.6 microns), particularly for the northern half of the ice
sheet. However, some of the clouds that are seen as textural
variations in Figure 9(a) are captured in 9(b) as bright (higher
reflectance) areas in the image, particularly in the centraland
southern regions of the ice sheet. Comparing Figure 9(b) with
a qualitative assessment of the clouds in Figure 9(a), it appears
that the majority of the clouds are captured, although the few

scattered clouds in the northwest part of the ice sheet are not
detected. The SVM RBF (Figure 9(c)) picks up the clouds
(brighter areas in the image), but this method also starts to
distinguish between different snow types as evident by the
slightly different reflectance values along the western margin
of the ice sheet. Further discrimination of different snow
types is observed in the SVM MDMK (Figure 9(d)) image.
For both the RBF and MDMK models, the tendency is to
overpredict channel 6. Thus, additional information wouldbe
needed in order to distinguish between atmospheric variations
(i.e. clouds) and variations in the snow/ice conditions. Note
also that, off the northwestern coast of Greenland, sea ice areas
that are cloud free appear as clouds (higher reflectance) in the
predictions. Thus, additional information such as surfacetype
may offer further improvements in the models’ ability to detect
clouds over snow and ice.

Figure 10(a)-(d) shows the same results as discussed above
but for day 150. The visible image (Figure 10(a)) suggests that
the entire western margin and the north central/eastern parts
of the ice sheet are cloudy. The MODIS channel 6 image
collected at a different time of day (Figure 11) indicates that
most of the ice sheet is actually cloud free except for areas
along the west-central part of the ice sheet and in the north.
Comparing the MLP (Figure 10(b)) results with the clouds
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Fig. 9. AVHRR predictions from year 2000, day 140, time 1839.(a) Upper Left. Channel 1. (b). Upper Right. Prediction of anMLP. (c) Lower Left.
Prediction of an SVM with RBF kernel. (d). Lower Right. Prediction of an SVM with MDMK kernel. The black areas with straight boundaries are regions
containing no data.

indicated as textural variations in the AVHRR channel 1 image
(Figure 10(a)) shows that this model captures some of the
scattered clouds along the western margin of the ice sheet, but
also misses quite a few of them, especially in the southern part
and also the central-northern part of the ice sheet. Similarly, in
the northeastern part of the ice sheet, the MLP is not capturing
all the clouds observed in the visible image. The SVM RBF
(Figure 10(c)) model does a better job of detecting the clouds
in the northeastern region of Greenland as well as along the
west coast. The SVM MDMK model further detects some
clouds that are missed by the SVM RBF model (e.g. along
the south-west edge of Greenland) and also begins to highlight
more of the different snow/ice types.

These two different examples help to illustrate that simulat-
ing a 1.6 micron sensor channel does not necessarily capture
all the clouds. In general, snow has very low reflectance at
1.6 microns, whereas clouds have high reflectance. Thus, we
would expect snow cover to be bright in the visible channel
and dark at 1.6 microns. However, cloud reflectance at 1.6
microns depends in part on the cloud type and may be bright
or less bright (e.g. gray).

In the day 140 example, the MLP prediction does capture
most all of the clouds observed in the visible image. For this
day, the 1.6 micron is a good cloud classifier. On day 150

MODIS 2000 day 150 channel 6

Fig. 11. MODIS year 2000 day 150 time 1905 true channel 6.

however, the MLP prediction does not perform quite as well.
Even though it may still accurately predict the TOA reflectance
at 1.6 microns, some clouds are missed.
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Fig. 10. AVHRR predictions from year 2000, day 150, time 1825. (a) Upper Left. Channel 1. (b). Upper Right. Prediction of an MLP. (c) Lower Left.
Prediction of an SVM with RBF kernel. (d). Lower Right. Prediction of an SVM with MDMK kernel. The black areas with straight boundaries are regions
containing no data.

VI. CONCLUSION

In this paper we have presented the development of data
mining algorithms to estimate unobserved spectra. We call
this estimation method “Virtual Sensors.” We presented some
results on a particular instantiation of Virtual Sensors: the
estimation of MODIS channel 6 for AVHRR/2. Our mo-
tivation for choosing this particular problem is to aid in
the discrimination of clouds from snow and ice. This is a
challenging problem that is essential to solve in order to map
the cryosphere using visible and thermal imagery. Clouds
often have spectral reflectances and temperatures similar to
snow. Most cloud detection algorithms operationally employ
a series of spectral threshold tests to determine if a pixel is
clear or cloudy. Having a channel centered around 1.6 microns
has significantly improved the ability to discriminate between
clouds and snow using new sensors such as MODIS and
AVHRR/3. Unfortunately, a vast amount of data have been
collected before these sensors existed that did not have a
channel designed to detect clouds over snow and ice-covered
surfaces. These data sets have large importance for climate
studies since they provide over 20 years worth of observations.
Thus, being able to improve the cloud masking abilities of
these previous sensors will allow for improved monitoring of

several cryospheric variables, such as surface albedo, surface
temperature, snow and ice cover.

In the above analysis, we used calibrated TOA reflectances
from the MODIS and AVHRR/2 instruments. These re-
flectance values are dependent upon the specific viewing
and illumination geometry of the orbit considered. This may
lead to some errors since snow and clouds do not reflect
the incoming solar radiation isotropically. The magnitudeof
this effect remains to be determined. However, the angular
variability of the reflectance may possibly fall into the “noise”
of the data so that our methods can be applied prior to using
methods to correct for the angular variability of the TOA
reflectance.

We plan to extend our work on the problem of estimating
MODIS channel 6 for AVHRR/2 images in several directions.
In order to determine if our methods have promise and can
quickly learn a good model, we trained on very little data. We
plan to train on additional data over different times of year
to understand how much improvement is possible. We plan to
develop more scalable algorithms that will allow us to train
on large amounts of data in a practical amount of time. For
example, active learning algorithms only process exampleson
which the current model’s predictions are significantly in error
and do not waste effort on the remaining examples the way
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traditional machine learning algorithms do. Online learning
algorithms process training examples only once rather than
repeatedly cycling through them the way traditional algorithms
do. We also plan to perform a more detailed analysis of the
results over more images from different years and different
times of year in order to better understand the situations in
which different data mining algorithms are most effective.
This may lead to the development of a hybrid scheme (e.g.,
ensemble) that performs better than any one method. Along
these lines, our MDMK kernel enables us to build an ensemble
of mixture models that use a variety of different kernel
functions. Our algorithms currently only train on and generate
predictions for individual pixels in individual images. Spatial
correlation and temporal correlation will be accounted forin
our future work.

We also plan to go beyond the particular problem of pre-
dicting channel 6 to predicting other channels and quantities
that are of scientific importance. We will attempt to quantify
cross-channel information through further mutual information
studies.

APPENDIX I
INSTRUMENT SPECIFICATIONS

Tables II and III contain specifications of the AVHRR/2 and
MODIS instruments, respectively.

TABLE II

AVHRR/2 INSTRUMENTSPECIFICATIONS

Channel Number Wavelength (microns) Purpose
1 0.58 to 0.68 Cloud Cover

Snow Cover
Vegetation Index

2 0.725 to 1.00 Earth Radiation Budget
Surface Water Boundaries

Vegetation Index
3 3.55 to 3.93 Water Vapor Correction

Thermal Mapping
4 10.3 to 11.3 Thermal Mapping
5 11.5 to 12.5 Water Vapor Correction

Thermal Mapping

TABLE III

MODIS INSTRUMENTSPECIFICATIONS

Band Bandwidth (microns) Primary Use
1 0.62 - 0.67 Land/Cloud/Aerosols

Boundaries
2 0.841 - 0.876 Land/Cloud/Aerosols

Boundaries
3 0.459 - 0.479 Land/Cloud/Aerosols

Properties
4 0.545 - 0.565 Land/Cloud/Aerosols

Properties
5 1.23 - 1.25 Land/Cloud/Aerosols

Properties
6 1.628 - 1.652 Land/Cloud/Aerosols

Properties
20 3.660 - 3.840 Surface/Cloud

Temperature
31 10.780 - 11.280 Surface/Cloud Temperature
32 11.770 - 12.270 Surface/Cloud Temperature
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